Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0880220220600070689
Journal of Microbiology
2022 Volume.60 No. 7 p.689 ~ p.704
Whole-genome sequencing analysis of Shiga toxin-producing Escherichia coli O22:H8 isolated from cattle prediction pathogenesis and colonization factors and position in STEC universe phylogeny
Da Silva Wanderson Marques

Larzabal Mariano
Aburjaile Flavia Figueira
Riviere Nahuel
Martorelli Luisina
Bono James
Amadio Ariel
Cataldi Angel
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen capable of causing illness in humans. In a previous study, our group showed that a STEC isolate belonging to O22:H8 serotype (strain 154) can interfere with STEC O157:H7 colonization both in vitro and in vivo. Using whole-genome sequencing and genomic comparative, we predicted a subset of genes acquired by O22:H8 strain 154 through horizontal gene transfer that might be responsible for the phenotype previously described by our group. Among them were identified genes related to the pathogenesis of non-LEE (locus of enterocyte effacement) STEC, specific metabolic processes, antibiotic resistance and genes encoding for the T6SS-1 that is related to inter-bacterial competition. In addition, we showed that this strain carries stx1c and stx2dact, a mucus-inducible variant. The results obtained in this study provide insights into STEC genomic plasticity and the importance of genomic islands in the adaptation and pathogenesis of this pathogen.
KEYWORD
non-LEE STEC, non-O157, bacterial genome, pangenome, foodborne pathogen, genomic island, T6SS
FullTexts / Linksout information
Listed journal information
MEDLINE ÇмúÁøÈïÀç´Ü(KCI) ´ëÇÑÀÇÇÐȸ ȸ¿ø